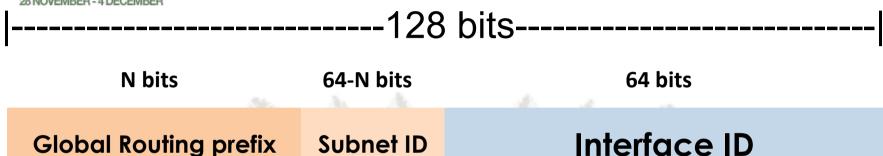


Presentation Objectives


- Create awareness of IPv6 Security implications.
- Highlight technical concepts on IPv6 weaknesses
- Describe strengthening technics.

The 128 bits IP address

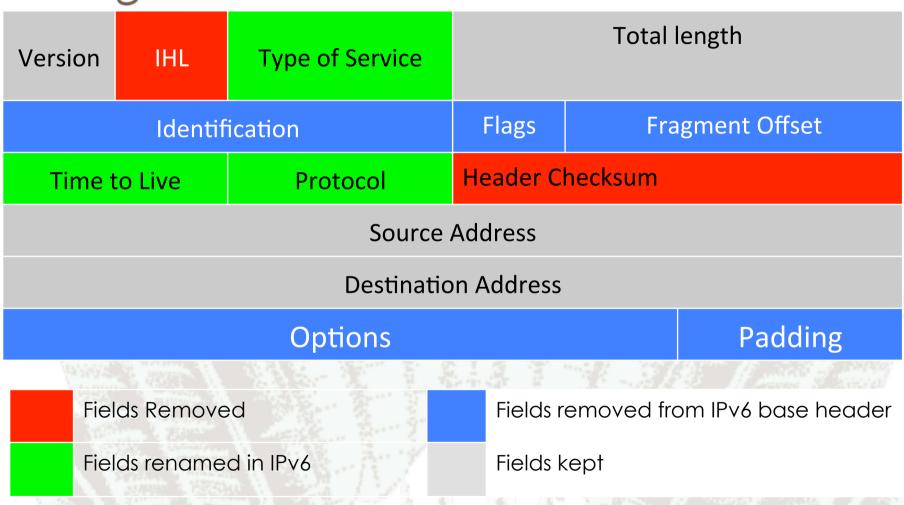
- ◆ 2^128 ~ 304,282,366,920,938,463,463,374,607,431,768,211,456 trillion trillion possible IP addresses.
- Simplified base header compared to IPv4
- Plug n play with SLAAC
- Most of IPv4 functions (DHCP, DNS, routing ...)

Protocols Similarities

APPLICATION(DNS, HTTP, IMAP, SMTP, POP, NFS)

TRANSPORT(TCP, UDP)

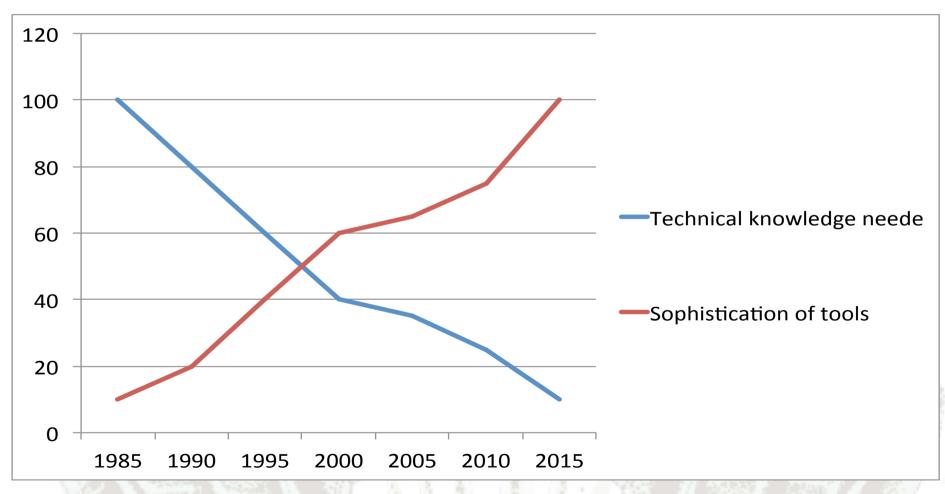
NETWORK(IPv4/IPv6)


IPv4 (ICMP, IGMP, IPSec, NAT, OSPF, IS-IS, mob. IP)

IPv6(ICMPv6, IPSec, ND, MLD, OSPFv3, IS-IS, mob. IP)

DATA LINK(Ethernet & co., NBMA, ATM, PPP, WiMAX, 3GPP)

Any Similarity?



IPv6 is a network-layer replacement for IPv4

IPv4 World IPv6 World **DNS** Web DNS Web **TCP UDP** IPV6 **ICMP** IPV4 ICMPV6 **IPCP IPCP ARP**

Attacking tools sophistication

IPv6 attack tools?

Attacks	Tools
Reconnaissance	Alive6 and Nmap
Amplification	Smurf6, Rsmurf6
Covert Channel, Tunnel Injection, RH0	Scapy
Router Alert	Scapy, denial6
Tiny Fragments, Large Fragments	Scapy, thcping6
RA Spoofing	fake_router26, kill_router6, flood_router26
NA Spoofing	parasite6, fake_advertise6, flood_advertise6
NS Spoofing, NS Flooding Remote	flood_solicitate6, ndpexhaust6
DAD Spoofing, Redirect Spoofing	dos-new-ip6, redir6
DHCPv6 Spoofing	flood_dhcpc6, fake_dhcps6

Is IPv6 is more secured than IPv4?

- IPSec is incorporated
- There is a large space not easy to scan

I don't care IPv6 not on my network Really?

All modern OS have IPv6 activated by default

./flood_router6 iface

IPv6 is just a successor of IPv4, so similar Think twice!!!

IPv6 is new and most of the functionalities

IPv6 is not secured, NAT is missing Who told you NAT is security?

NAT was meant to save address space

Any how check with your vendor:

- ◆ CISCO NPTv6
- Juniper basic-nat66
- Iptables t nat66
- Use of proxy

Reconnaissance in IPv6

- Starting point for network attacks.
- /64 subnets, 1M tests/sec => 1400 Mbps =>
 28 yrs to discover 1st active IPv6 address.
- With IPv6, new technics:
 - Hints: DN, OIDs, logs, whois, flow, well
 known addresses, transition mechs...

Reconnaissance in IPv6

- Site multicast: FF05::2, FF05::FB, FF05::1:3
- Link multicast: FF02::1, FF02::2, ...
- Deprecated site local fec0:0:0:ffff::1
- Van Hauser found 2000 active IPv6 addresses in 20 secondes.

Use your border router

Filter all site multicast at border router
 Ipv6 access-list NO-SITE-MCAST
 deny any FEC0::/10 (deprecated site local)
 permit any FF02::/16 (link multicast)
 permit any FF0E::/16 (global multicast)
 deny any FF00::/16 (all other multicast)

A look at ICMPv6

ICMPv6 is crucial to IPv6

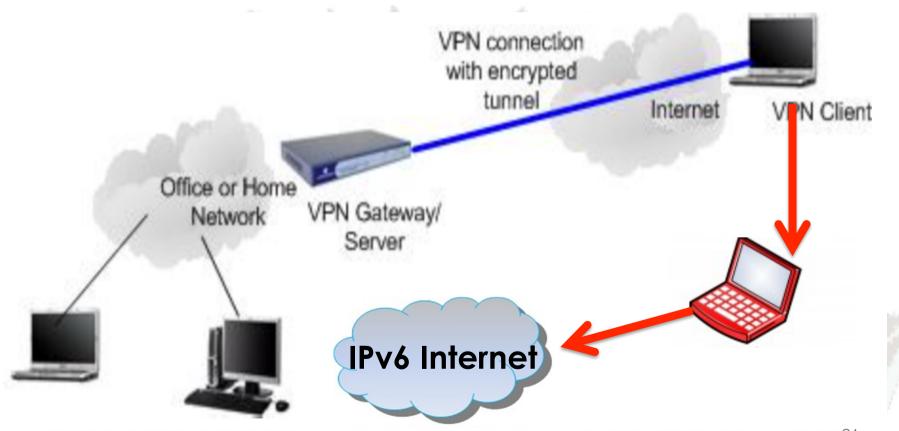
NDP(RS, RA, NS, NA, Redirect)

Signalisation (Destination Unreachable, Time Exceeded, Packet too big, Redirections)

Diagnostic (Ping, traceroute)

Some LAN Attacks

- Neighbor cache spoofing (works like ARP spoof)
- DoS on DAD (Answer to all DAD requests)
- Neighbor cache overload (Fake NAs)
- Fake Router Advertisement
- Fake DHCPv6 server


AFRINIC Solutions against spoofing

- CISCO SeND (RFC 3971), encrypts ND.
- RA-Guard (RFC 6101), drop RAs on access port.
- SAVI(draft), complex solution to solve fake RA,
 DHCPv4, and DHCPv6.
- RAGuards bypass with fragmentation.

VPN Exfiltration

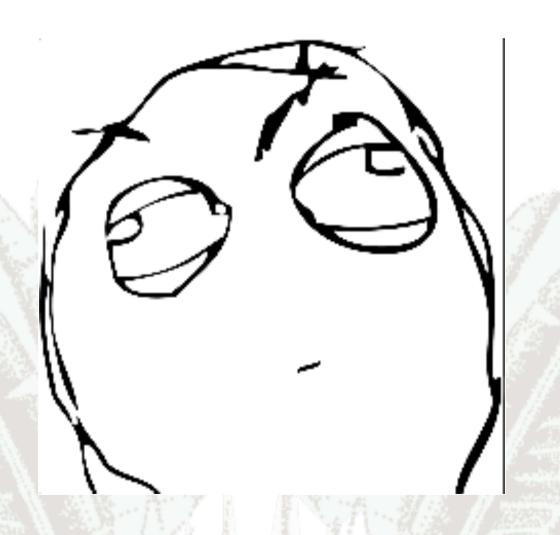
Insertion of IPv6 fake router and DNS64 to Network.

Some Protocol problems

- SLAAC doesn't give DNS by default, DHCP doesn't give default router.
- Need to use both, so think security twice.
- TCP reassembly problem.

AFRINIC 23 POINTE NOIRE 28 NOVEMBER - 4 DECEMBER

Extensions Headers


- New mechanism in IPv6, used to encrypt optional inter-layer information.
- RH0 deprecated by RFC 5095
- Fragmentation VRF
- EH manipulation (long chain, reorder)
- Block any unknown EH, and make sure to update list.

AFRINIC Implementations problems

- Bugs have been found in nearly all implementations, some examples follow:
- Windows vista Teredo filter bypass;
- CISCO IPv6 Source Routing Remote memory corruption;
- Linux kernel multiple packet filtering bypass

Is IPv6 more secured?

AFRINIC Creating an IPv6 Security Policy

28 NOVEMBER - 4 DECEMBER

Network perimeter policy

- ◆Issues with ICMPv6 messages at perimeter.
- ◆Issues with Mobile IPv6 at the perimeter network.
- ◆IPv6 bogon addresses at network perimeters.
- Only send packets sourced with your allocated IPv6 block or LLA in the case of NDP.
- Only receive packets to your allocated IPv6 or for NDP.

Network perimeter policy

- Perform uRPF filtering at the network perimeter and throughout the interior of the network.
- ◆ Your firewalls should support IPv6 and ICMPv6 messages SPI and parsing the complete EHs.
- ◆Use IPv6-capable host-based firewalls.
- Use IPS that can deeply inspect IPv6 packets.
- Filter multicast packets at your perimeter based on their scope.

AFRINIC Extensions Headers policy

- ✓ Only use operating systems with RH0 disabled.
- Drop RHO packets and unknown EHs at perimeter firewall and throughout interior of the network.

LAN policy

- ✓ No unauthorized access is permitted. All Network guests MUST follow a network access permission policy.
- ✓ Explicitly prohibit the spoofing of any IPv6 packet on LAN(RS, RA, NA, NS, redirect) and on the WAN (multicast, spoofed Layer 3/4 info).
- ✓ Use randomly determined node identifiers for all IPv6 nodes at the expense of increasing the OPEX.
- ✓ Determine whether the use of privacy/temporary addresses is strictly prohibited in your organization.

LAN Policy

- ✓ DHCPv6 is preferred, and EUI-64, if DHCPv6 is not available.
- ✓ Keep track of IPv6 addresses all hosts are using.
- ✓ Use IPv6-capable NAC solutions, and SEND when available in the network equipment and host OS.
- ✓ Disable node-information queries on all hosts.

Host & device hardening

- Hosts and devices related policies:
 - ✓ Harden all IPv6 Nodes (routers, servers, ...).
 - ✓ Strictly control the use of multicast.
 - Only use OS that do not send ICMPv6 error messages in response to a packet destined for a multicast address.
 - ✓ Use OS that use integrated HIPS and IPv6-capable firewalling.

Host & device hardening

- Hosts and devices related policies:
 - ✓ Keep OS/software patched for any IPv6 known vulnerability or recommended by the vendor.
 - ✓ Proactively monitor the security posture of hosts and remediate them AQAP.
 - Secure any routing adjacency or peer to the fullest extent possible (packet/prefix filtering on interfaces, passwords, MD5, or IPsec).

Transition mechanisms policy

- Prefer DS, and secure each protocol equally.
- Use manual tunnels only (using Ipsec preferred)
 and perform filtering on the tunnel endpoints.
- Avoid 6to4 if not required.
- Prevent Teredo on Windows unless a special security policy waiver has been signed.
- No IPv6-in-IPv4 (IP protocol 41) tunnels through the perimeter unless required.

IPSec Framework

Policies related to IPSec include the following:

- ✓ Use IPSec when ever possible for securing communications between systems/network devices unless the use of DPI, IP35S, traffic classification, and anomaly systems is a requirement.
- ✓ Strive to use AH with ESP and IKEv2 for all IPSec connections.

Thank you for your Attention

Questions?

twitter.com/ afrinic

flickr.com/ afrinic

facebook.com/ afrinic

linkedin.com/company/afrinic

youtube.com/ afrinic media

www. afrinic.net