Mobile Health

Architecture, Applications, Security

Capt Farell FOLLY, Ir

Africa Internet Summit 2013

June 20th, Lusaka - ZAMBIA

Sommaire

- Introduction
- 2 mHealth
- SepharmacyNet Project

- Introduction
 - m-Services
- 2 mHealth
 - Use cases for mHealth
 - Functionnal Requirements
 - Architecture
 - Applications and Services
 - Security
- EpharmacyNet Project
 - Description
 - Interactions

Introduction

Mobile Telephony . . .

- High rate of expansion ^a
- Introduction of new generation mobile networks (3G, 4G, LTE; etc.)
- Primary alternate solution for rural environment.
- a. 5% in 1998, 50% in 2008 and one can estimate to 99% in 2018.
- b. With a penetration rate of 0 % in 1998, 19% in 2008 and one can estimate to 90% en 2018.

Innovative mobile Services

All new services that can take advantage from the rapid growing of mobile telephony and mobile internet :

- Mobile Money or mMoney
- Mobile Education or mEducation
- Mobile Agriculture or mAgriculture
- Mobile Health ou mHealth

- Introduction
 - m-Services
- 2 mHealth
 - Use cases for mHealth
 - Functionnal Requirements
 - Architecture
 - Applications and Services
 - Security
- 3 EpharmacyNet Project
 - Description
 - Interactions

Objective

 How to use ICT to improve care delivery efficiency in health domain?

Objective

 How to use ICT to improve care delivery efficiency in health domain?

mHealth

→ A new EHealth approach to increase means and efficiency of care delivery: diagnosis, remote monitoring of chronic diseases ^a(including diabete, COPD) care/medicine prescription, advice etc.

a. 63% of mortality in 2010 according to WHO.

mHealth eco-system

Roles and components of a mHealth system :

mHealth eco-system

Roles and components of a mHealth system :

Patient: is a person with some kind of health problem.

Clinician: is a healthcare professional who is treating or helping the Patient with the health problem, ie a nurse, a General Practitioner, or a specialised physician.

HealthCare Provider (HCP): is the entity that is utilizing a mobile health Service in the monitoring, diagnosis and treatment of the Patient.

mobile Health Service (mHS): is the service that connects the Patient to the Clinician, and ensures data measures, transport and protection.

mHealth eco-system

Roles and components of a mHealth system :

mobile Health Service provider (mHSP): is the entity providing the mHS through a mobile health Platform (mHP).

mobile Health Platform (mHP): is the IT system connected to the mobile network to provide all necessary functionality.

mobile Health Device (mHD): is a device needed to use the mHS and to connect to the mHP.

Use cases for mHealth

The use cases investigated in this presentation are :

- Onsumer purchases mobile health service.
- 4 Healthcare Provider prescribes mobile health service.
 - (a) Prescribed mobile health service with a mobile health Gateway Device.
 - (b) Mobile health service connected to Healthcare IT system.
- Prescribed mobile health service for Disease Management.

Note that, health problems considered in this presentation and the use cases are all low risk..

Use case 1: Consumer purchases mHS

This use case describes a system that allows remote monitoring of a patient by a subscriber (parent, insurance company, etc.) :

Subscriber & Observer

FIGURE 1: Consumer purchases mHS

Use case 2 : Healthcare Provider prescribes mHS

This use case includes intervention of HCP for measuring and remote monitoring 1 .

FIGURE 2: HCP prescribes mHS

^{1.} For instance a GP may need to monitor daily records of blood sugar level for a patient suffering of diabete

Use case 2a: Prescribed mobile health service with a mHGD

This use case differs from the previous with the introducion of a gateway: mHGD that aggregates data from different sensors.

FIGURE 3: Use case 2a : Prescribed mobile health service with a mHGD

Use case 2b: mHS connected to Healthcare IT system

This use case introduces new devices at the HCP side, such as EHR et PHR^2 servers :

FIGURE 4: mHS connected to Healthcare IT system

^{2.} E(P)HR : Electronic (Personal) Health Record

Use case 3: Prescribed mHS for Disease Management

Use case 3 is the most complex 3 :

FIGURE 5: Prescribed mHS for Disease Management

^{3.} It is unlikely to find or implement such a system in developing countries because it requires important infrastructures, high knowledge, development and user experiences in mHealth domain.

Use case 3 : Prescribed mHS for Disease Management

- Educative system
- Patient: reacts and ajusts his insulin level himself.
- HCP: modify the Patient self management level according to seen improvements.

Requirements overview

- Scalability
- Interoperability
- Security

Fonctionnalities of the mHD

- Easy to use according to the target group.
- Unique ID.
- **3** GSM connectivity.
- Secure.

Fonctionnalities of mHS

- Online Helpdesk.
- Web portal.
- Easy setting of parameters ⁴.
- Use of international standards for messaging and communication.

^{4.} Especially threshold values that match therapy goals

Security requirements

- End to end security using a unique asset of MNO.
- Users authentication.
- Registration of users and mHD to HCP (billing).

Overall, mHS continuity levels must match the level of medical risk associated with it.

Interoperability

- Use of international standards and messaging formats : HL7, IEEE11073, etc.
- MH application must be able to communicate with the IT system of the HCP.
- Technology to be used: Bluetooth, Zigbee or USB between sensors and gateway.

Interoperability

Introduction mHealth EpharmacyNet Project Use cases for mHealth Functionnal Requirements **Architecture** Applications and Services Security

mHealth network Architecture

mHealth network protocols suite

FIGURE 8: Continua certified WAN interfaces

Examples

Examples

Category	Sub-category	Client / Beneficiary Profile	Focus Area	Content type	Key Platforms	Key Players
Solutions across the Patient Pathway	Wellness	• Individuals	Obesity Management Healthy Living Elderly Care Child Care Pregnancy Tips Smoking De-addiction	Information Tips / Interactive Services Fitness Monitoring	ISMS (including USSD) IVR Apps Devices	Mobile Operators Device Vendors Content Developers
	Prevention	Individuals exposed to Diseases / Epidemics / Other Health Concerns	Infectious Diseases Drug Abuse Prevention Reproductive Health Child Health	Information Tips	SMS (including USSD) IVR	Mobile Operators
	Diagnosis	Individuals -Low Income / Low Reach -Primarily Rural Areas	Health call-centers / help-lines Tele-medicine	Interactive Consultation	Voice / IVR / SMS Telemedicine Centers	Healthcare Providers Mobile Operators
	Treatment	Individuals	Treatment Compliance	Reminders / Compliance Trackers	SMS (including USSD) IVR Apps	Content Developers Mobile Operators

 $FIGURE \ 9: \ {\small Applications \ and \ services \ mHealth}$

Examples

	Monitoring	Individuals suffering from chronic diseases or recovering from acute conditions Elderly	Chronic Disease Management Independent Aging Post Acute Care	Trackers for Body Vitals and Activities Reporting and Alert Messages	Device-linked	Mobile Operators Device Vendors
Healthcare Systems Strengthening	Response	Institutional – Hospitals	Solutions	Trackers for Body Vitals Interactive Consultation	Device-linked	Device Vendors Mobile Operators
	Healthcare Practitioner Support	Institutional – Hospitals Physicians	Information Lookup and Decision Support Systems	Medical Information	Apps Internet-based	Content Developers Mobile Operators
	Healthcare Surveillance	Government - NGOs • Healthcare Workers	Health Surveys & Surveillance	Data Collection and Reporting Support	Apps Internet-based	Mobile Operators Content Developers
	Administration	Institutional – Hospitals Physicians	Appointment Reminders	Reminders	SMS (including USSD)	Content Developers Mobile Operators

 $FIGURE \ 10: \ \mathsf{mHealth} \ \mathsf{Applications} \ \mathsf{and} \ \mathsf{services}$

Introduction mHealth EpharmacyNet Project Use cases for mHealth Functionnal Requirements Architecture Applications and Services Security

Security overview

Security requirements are an important aspect of mobile health system :

- Device and data security
 - (a) In memory
 - (b) Processing
 - (c) Transmission
- 2 Confidentiality and integrity of information
- User authentication
- System availability and access to ressources
- Non repudiation (useful in case of medical prescription)

Security overview

There are different ways to achieve ⁵ security requirements in a mHS :

- Focus on mHD-mHP connection.
- Use of available unique asset of MNO (IMSI, IMEI, PIN, etc.).
- Standard 3G, GSM radio encryption
- Transport Layer Security (TLS) with Generic Bootstrapping Architecture (GBA)
- Mobile health application embedded on the UICC

^{5.} Any design should also consider risk and regulation () () () () ()

Solutions

Solutions based on a mobile health application on the UICC :

- UICC cointains (U)SIM for authentication.
- UICC has enough storage to hold extra applications.
- Experiences of mobile money, mobile banking.
- More efficiency: XML, PKCS#7, S/MIME, OpenPGP encryption with non repudiation required on mHCD.

Solutions

A mobile health application on the UICC $^{\rm 6}$ has many advantages including :

- Universality
- Portability
- Accessibility
- Interoperability
- Payment integration, tracking.

But ...

^{6.} There are three ways to do that : pre-loading, loading at a Point of Interaction and OTA 🔻 👢 🔻 😤 💉 🔾 🔾

- Introduction
 - m-Services
- 2 mHealth
 - Use cases for mHealth
 - Functionnal Requirements
 - Architecture
 - Applications and Services
 - Security
- 3 EpharmacyNet Project
 - Description
 - Interactions

Introduction

EpharmacyNet (\leftarrow *Ecare*)

- Aims to reduce issues associated with « Pharmacy Tourism »
- Had been tested in Benin in 2010 with 434 patients
- 3 2010 IHI award in Washington DC

Interactions in EpharmacyNet

In an EpharmacyNet system:

- A Patient gets a medical prescription
- EpharmacyNet platform consists in centralized databases
- The Patient connects to EpharmacyNet system
- The user interface displays a list of nearest pharmacies matching the request
- Electronic, online and cash payment
- Home delivery

Interactions in EpharmacyNet

 ${
m FIGURE} \ 11$: EpharmacyNet procedures and actors

Interactions in EpharmacyNet

FIGURE 12: Communication in EpharmacyNet (3.5 ± 0.00)

Conclusion

Mobile Health Systems can help to improve care delivery :

Conclusion

Mobile Health Systems can help to improve care delivery :

- Increase of care centres (virtually)
- Reduction of delay associated with medical interventions and medicine delivery
- Increase of social wellness
- Better monitoring and statistics at national level

. . . End.

Bibliography

M-Government: Mobile Technologies for responsive governments and connected societies, from ITU, OECD Bookshop 2011

Ecare: An approach to improve the rural Healthcare in Developing Countries, case of Benin, by Thierry Edoh and Gunnar Teege

EPharmacyNet: An approach to improve the Pharmaceutical care
Delivery in Developping Countries, study Case of Benin,
by Thierry Edoh and Gunnar Teege

Connected Mobile Health Devices : A reference architecture, GSM Association publication Jan 2011

Understanding Medical Device Regulation for mHealth: A guide for Mobile Operators, GSM Association Feb 2012

Webographie

- www.hl7.org
- www.ihe.net
- www.ieee.org
- www.gsma.com