Deploying DNSSEC

Part II DNSSEC Mechanisms and deployment

AfriNIC-15, Yaounde, 21th November 2011

Alain Aina P.

aalain@afrinic.net

Public Key Crypto (in one slide)

- Key pair: a secret (or private) key and a public key Simplified:
 - If you know the public key, you can decrypt data encrypted with the secret key
 - Usually an encrypted hash value over a published piece of information; the owner is the only person who can construct the secret. Hence this a signature
 - If you know the secret key, you can decrypt data encrypted with the public key
 - Usually an encrypted key for symmetric cipher
- PGP uses both, DNSSEC only uses signatures

DNSSEC Mechanisms

- New Resource Records
- Setting Up a Secure Zone
- Delegating Signing Authority
- DNSSEC Deployment Rollovers

New Resource Records

RRs and RRSets

• Resource Record:

- name TTL class type rdata
www.nlnetlabs.nl. 7200 IN A 192.168.10.3

• RRset: RRs with same name, class and type:

www.nlnetlabs.nl. 7200 IN A 192.168.10.3 A 10.0.0.3 A 172.25.215.2

• RRSets are signed, not the individual RRs

New Resource Records

of

- Three Public key crypto related RRs
 - RRSIG Signature over RRset made using private key
 - DNSKEY Public key, needed for verifying a RRSIG
 - DS Delegation Signer; 'Pointer' for building chains authentication
- One RR for internal consistency
 - NSEC Indicates which name is the next one in the zone and which typecodes are available for the current name
 - authenticated non-existence of data

DNSKEY RDATA

RRSIG RDATA

Delegation Signer (DS)

- Delegation Signer (DS) RR indicates that:
 - delegated zone is digitally signed
 - indicated key is used for the delegated zone
- Parent is authorative for the DS of the child's zone
 - Not for the NS record delegating the child's zone!
 - DS **should not** be in the child's zone

DS RDATA

NSEC RDATA

- Points to the next domain name in the zone
 - also lists what are all the existing RRs for "name"
 - NSEC record for last name "wraps around" to first name in zone
- N*32 bit type bit map
- Used for authenticated denial-of-existence of data

 authenticated non-existence of TYPEs and labels
- Example:

www.nlnetlabs.nl. 3600 IN NSEC

nlnetlabs.nl. A RRSIG NSEC

NSEC Records

- NSEC RR provides proof of non-existence
- If the servers response is Name Error (NXDOMAIN):
 - One or more NSEC RRs indicate that the name or a wildcard expansion does not exist
- If the servers response is NOERROR:
 - And empty answer section
 - The NSEC proves that the QTYPE did not exist
- More than one NSEC may be required in response
 - Wildcards
- NSEC records are generated by tools

NSEC Walk

- NSEC records allow for zone enumeration
- Providing privacy was not a requirement at the time
- Zone enumeration is a problem for some entities
- NSEC3
 - All RR names hashed
 - Hashed names are ordered
 - "opt-out" for unsecured delegations possibilities

Delegating Signing Authority

Chains of Trust

Using the DNS to Distribute Keys

- Secured islands make key distribution problematic
- Distributing keys through DNS:
 - Use one trusted key to establish authenticity of other keys
 - Building chains of trust from the root down
 - Parents need to sign the keys of their children
- Only the root key needed in ideal world
 Parents always delegate security to child

Key Problem

- Interaction with parent administratively expensive
 - Should only be done when needed
 - Bigger keys are better
- Signing zones should be fast
 - Memory restrictions
 - Space and time concerns
 - Smaller keys with short lifetimes are better

Key Functions

- Large keys are more secure
 - Can be used longer \bigcirc
 - Large signatures => large zonefiles 😕
 - Signing and verifying computationally expensive
 Image: Image
- Small keys are fast
 - Small signatures 🙂
 - Signing and verifying less expensive $\ensuremath{\textcircled{\odot}}$
 - Short lifetime 😕

Key solution: More Than One Key

- RRsets are signed, not RRs
- DS points to specific key
 - Signature from that key over DNSKEY RRset transfers trust to all keys in DNSKEY RRset
- Key that DS points to only signs DNSKEY RRset

 Key Signing Key (KSK)
- Other keys in DNSKEY RRset sign entire zone
 Zone Signing Key (ZSK)

Initial Key Exchange

• Child needs to:

- Send key signing keyset to parent

- Parent needs to:
 - Check child's zone
 - for DNSKEY & RRSIGs
 - Verify if key can be trusted
 - Generate DS RR

y configured d key: . <mark>8907</mark>

Walking the Chain of Trust

Security Status of Data (RFC4035)

- Secure
 - Resolver is able to build a chain of signed DNSKEY and DS
 RRs from a trusted security anchor to the RRset
- Insecure
 - Resolver knows that it has no chain of signed DNSKEY and DS RRs from any trusted starting point to the RRset
- Bogus
 - Resolver believes that it ought to be able to establish a chain of trust but for which it is unable to do so
 - May indicate an attack but may also indicate a configuration error or some form of data corruption
- Indeterminate
 - Resolver is not able to determine whether the RRset should be signed

DNSSEC DEPLOYMENT

DNSSEC Deployment Tasks

- Key maintenance policies and tools
 - Private key use and protection
 - Public key distribution
- Zone signing and integration into the provisioning chain
- DNS server infrastructure
- Secure delegation registry changes
 - Interfacing with customers

DNSSEC Architecture modification

Key Maintenance

- DNSSEC is based on public key cryptography
 - Data is signed using a private key
 - It is validated using a public key

Operational problems:

- Dissemination of the public key
- Private key has a '*best before*' date
 - Keys change, and the change has to disseminate

DNSSEC Policy & Practice Statement

• draft-ietf-dnsop-dnssec-dps-framework

This document presents a framework to assist writers of DNSSEC Policy and Practice Statements such as Domain Managers and Zone Operators on both the top-level and secondary level, who is managing and operating a DNS zone with Security Extensions (DNSSEC) implemented.

In particular, the framework provides a comprehensive list of topics that should be considered for inclusion into a DNSSEC Policy definition and Practice Statement.

- ICANN DPS for root zone
 - http://www.root-dnssec.org/wp-content/uploads/2010/06/icanndps-00.txt

Public Key Dissemination

- In theory only one trust-anchor needed that of the root
 - How does the root key get to the end user?
 - How is it rolled?
- In absence of hierarchy, there will be many trustanchors
 - How do these get to the end-users?
 - How are these rolled?
- These are open questions, making early deployment difficult.
- DLV registries(https://secure.isc.org/index.pl?/ops/dlv/)

Key Management

- There are many keys to maintain
 - -Keys are used on a per zone basis
 - Key Signing Keys and Zone Signing Keys
 - -During key rollovers there are multiple keys
 - In order to maintain consistency with cached DNS data
 - RFC4641
- Private keys need shielding

Private Key Maintenance Basic Architecture

Maintaining Keys and Signing Zones

- The KeyDB maintains the private keys
 - It 'knows' rollover scenarios
 - UI that can create, delete, roll keys without access to the key material
 - Physically secured
- The signer ties the Key DB to a zone
 - Inserts the appropriate DNSKEYs
 - Signs the the zone with appropriate keys
- Strong authentication

Infrastructure

- One needs primary and secondary servers to be DNSSEC protocol aware
- We have concerns about Firewalls/IDS/IPS on DNS packet size and EDNS0
 - http://www.icann.org/committees/security/sac016.htm
- We had a number of concerns about memory, CPU, network load
 - Research done at RIPE-NCC and published as RIPE 352

Infrastructure

- Bandwidth increase is caused by many factors
 - Hard to predict but fraction of DO bits in the queries is an important factor
- CPU impact is small, Memory impact can be calculated
- Don't add DNSKEY RR set in additional

Parent-Child Key Exchange

• In the DNS the parent signs the "Delegations Signer" RR

- A pointer to the next key in the chain of trust

• DNSKEY or DS RR needs to be exchanged between parent and child

Underlying Ideas

- The DS exchange is the same process as the NS exchange
 - Same authentication/authorization model
 - Same vulnerabilities
 - More sensitive to mistakes
- Integrate the key exchange into existing interfaces
 - Customers are used to these
- Include checks on configuration errors
 DNSSEC is picky
- Provide tools
 - To prevent errors and guide customers

Questions ???